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Abstract— We summarize some recent results in the analysis
of the dynamic stability of wholesale electricity markets. We
discuss how to construct control-theoretic market analysis
frameworks using concepts of market efficiency, Lyapunov
stability, and predictive control. Such frameworks can be used
to design, analyze, and monitor the stability and robustness
properties of different market designs. In particular, we discuss
how short forecast horizons, incomplete gaming, and physical
ramping constraints can give rise to stability issues.

I. INTRODUCTION

Understanding the sources of instability of electricity
markets has significant economic implications. In particular,
market instability leads to strong price fluctuations and to
inefficient spread of social welfare among consumers and
producers. Different market models have been derived in the
past in trying to predict the presence of strong variations
in prices resulting from dynamic forcings (e.g., weather,
load, fuel prices, and wind supply), physical constraints (e.g.,
ramping, transmission congestion), and gaming behaviors
(e.g., bidding strategies) [23]. These models range from data-
based time-series models [21], [8] to mechanistic models
based on agent-based systems [7], [22] and game-theoretical
formulations [6], [14].

Among all these models, game-theoretical formulations
enable one to understand not only how instability might
arise but also how it can be prevented through better market
designs. A widely used game-theoretical dynamic market
model was originally proposed in [1], [2]. This model as-
sumes that the market players (e.g., suppliers and consumers)
bid recursively in time in the direction that minimizes
their marginal cost. Every bidding step can be interpreted
as a steepest-descent step that converges to a steady-state
equilibrium as time evolves. While this model is useful for
analyzing stability properties of the market equilibrium, it is
based on mathematical rather than mechanistic assumptions
and thus has limited applicability. Recently, a dynamic mar-
ket model based on predictive control concepts was proposed
in [13], [12]. Here, supply functions and receding horizon
concepts are incorporated in the model. This provides a more
natural representation of actual bidding procedures where
the market players use forecast information in day-ahead
and real-time markets. This model has been used to analyze
the effect of dynamic disturbances such as wind on prices
under high penetration levels. A limitation of this framework,
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however, is that the dynamic model of the players is based
on the marginal-cost descent assumption.

Mechanistic dynamic market models based on bidding and
physical constraints considerations have also been proposed
[9], [18]. These models can be used to explain how price
fluctuations can arise from physical dynamic constraints
such as generation ramping. Ramping constraints depend on
multiple physical factors such as generator controller perfor-
mance, thermal stresses, and wall capacitances [3], [4]. These
dynamic constraints affect market performance in a similar
way as transmission congestion does [11]. The difference,
however, is that the effect of ramp constraints propagates
forward in time and thus cannot be detected instantaneously.
In [16], a game-theoretical framework was presented based
on dynamic games and predictive control concepts. Using
this model, the authors explained how ramping constraints
propagate forward in time through the generation levels
and thus affect long-term dynamic stability. The model
also explained how increasing the foresight horizons can
anticipate the ramping effects more effectively and decrease
the price fluctuations.

A caveat of existing market analysis tools is the lack of
a coherent framework that enables a systematic assessment
of the stabilizing properties of different market designs. In
[24], we proposed a control-theoretical framework using
market efficiency, Lyapunov stability, and predictive control
concepts. A market-specific Lyapunov function was derived
using a summarizing state that measures the progress of
the market efficiency. This Lyapunov function can be used
to establish conditions under which a given market design
can guarantee long-term stability. In particular, we used the
framework to explain how incomplete gaming solutions (as
those used in practice), short foresight horizons, and limited
ramping capacity can lead to instability. These insights were
used to propose a new stabilizing market design by making
use of a stabilizing constraint for the market efficiency.

In this report, we summarize some of these findings. The
paper is structured as follows. In Section II we present the
market structure under consideration. In Section III we dis-
cuss implementation issues arising from incomplete gaming.
In Section IV we derive a framework to analyze market
stability properties. In Section V we present a numerical
case study. In Section VI we provide concluding remarks
and recommendations for future extensions.

II. MARKET STRUCTURE

We first define the market structure under consideration
and discuss the underlying modeling assumptions.



A. Suppliers

We consider a supply-function equilibrium market struc-
ture similar to those proposed in [15], [16]. Here, the supplier
decisions are the parameters aik, b

i
k of the affine supply

function:
qik(pk, b

i
k, a

i
k) = bik · (pk − aik). (1)

Here, qik is the production quantity of supplier i ∈ S :=
{1..S} at time k; pk ≥ 0 is the price at time k; and aik, b

i
k

are the bidding coefficients at time k for supplier i. We
assume that the supply function is nondecreasing in pk.
Consequently, we impose the requirement that bik ≥ 0. In
our analysis, we assume that the generation quantities qik
and pk are always non-negative. Consequently, we restrict
the intercept parameter aik to be non-negative as well. The
supply function can also be expressed in inverse form as

pk(qik, b
i
k, a

i
k) =

1

bik
qik + aik. (2)

We observe that multiple combinations of aik, b
i
k ≥ 0 can

reach the same quantities or prices. Since this ill-posedness
introduces difficulties in analyzing the properties of the sup-
plier problem, we will assume that the intercept parameters
aik are zero. This assumption will not affect the analysis
as long as the price is assumed to be non-negative. The
consumer demands will be assumed to be fixed (inelastic)
and denoted by djk, where j ∈ C := {1..C} is the set of
consumers.

The supplier problem can be posed as follows. Starting at
time k, given the price signals pk over the future horizon
Tk := {k..k + T}, where T is the horizon length and the
current states qik, b

i
k, find the bidding parameter trajectories

bit, t ∈ Tk, that maximize the future profit (revenue minus
marginal cost). We can pose the supplier problem entirely
in terms of the prices pk and the supply function parameters
bik. In addition, we can interpret the bidding parameters bik as
the suppliers states. These modifications lead to the following
equivalent formulation in state-space form:

max
bit,∆b

i
t

∑
t∈Tk

φit :=
∑
t∈Tk

(
pt · bit · pt − cit

(
bit · pt

))
(3a)

s.t. bit+1 = bit + ∆bit, t ∈ Tk
− (3b)

qi ≤ bit · pt ≤ qi, t ∈ Tk (3c)

bit ≥ 0, t ∈ Tk (3d)

bik = given, (3e)

where qi, qi ≥ 0 are the lower and upper generation limits,
respectively. We also have Tk− := Tk \{k+T}. The bidding
increments ∆bik are interpreted as the control actions of the
supplier. Note that these are unconstrained, implying that
the suppliers can adjust their bids infinitely fast. A direct
consequence is that the feasible set of the problem is invariant
to the initial states bik. In addition, the feasible set is invariant
to the price signals pk since it is always possible to find bik ≥
0 mapping any pk to a feasible quantity qik. Consequently,
we denote the feasible set of this problem as Ωi.

The accumulated future profit is denoted by
∑
t∈Tk φ

i
k.

The marginal cost function is assumed to have the form

cik(qik) = hik · qik +
1

2
gik · (qik)2. (4)

We make the common assumption that gik > 0 so the
marginal cost is convex in qik [20].

Property 2.1: If pt ≥ 0 and git ≥ 0, t ∈ Tk then, problem
(3) is convex. If pt > 0, the problem has a feasible solution
for any qi, qi ≥ 0. If pt = 0, the problem admits a solution
only if qi = 0.

B. ISO Market Clearing

The independent system operator (ISO) receives the bid-
ding states bik and clears the market by determining the
generation quantities (and implicitly the prices) that balance
total supply and demand. The main objectives of the ISO
are to maximize social welfare and efficiency and to ensure
market stability. The interaction between the ISO and the
suppliers results in a game in which each player tries to
maximize its own performance metric.

In our analysis, market stability will be interpreted as the
ability to keep prices bounded from a given reference in the
presence of dynamic fluctuations of demands and renewable
supply and physical constraints. To account for this, we
propose to use the basic concept of market efficiency as a
measure of stability. To define efficiency, we first define an
ideal unconstrained market clearing problem. This problem
can be stated as follows. Given supply function states bik,
solve [6]:

min
qit

∑
t∈Tk

ϕ̄t :=
∑
t∈Tk

∑
i∈S

∫ qit

0

pt(q, b
i
t)dq (5a)

s.t. ∑
i∈S

qit ≥
∑
j∈C

djt , t ∈ Tk (5b)

qi ≤ qit ≤ qi, i ∈ S, t ∈ Tk, (5c)

where ∫ qik

0

pk(q, bik)dq =
1

2 bik
(qik)2. (6)

The objective function is the negative social welfare, denoted
as
∑
t∈Tk ϕ̄t. Since we have assumed that the consumers

do not bid into the market, this reduces to the aggregated
income of the suppliers. We have that ϕ̄t ≥ 0 since
qit, b

i
t ≥ 0, t ∈ Tk. The multipliers for the constraint (5b)

are the prices p̄t ≥ 0. Note that the feasible set of this
problem is not affected by the bidding parameters, since
they enter only in the objective function. In addition, in this
unconstrained formulation, we assume that the generators
can move infinitely fast between production levels (no ramp
constraints). This assumption decouples the problem in time
(i.e., each time step can be solved separately). Hence, the
feasible set of this problem is invariant to the current state
of the generators qik. Nevertheless, the feasible set of this
problem does depend on the demands. Accordingly, the



feasible set of this problem will be denoted as ΩISOUNC(djTk),
where djTk := {djk, ..., d

j
k+T }.

Property 2.2: If bit ≥ 0, t ∈ Tk, problem (5) is con-
vex. The problem has a feasible solution if

∑
i∈S q

i ≤∑
j∈C d

t
j ≤

∑
i∈S q

i holds. If bit > 0, feasibility holds for
any qi, qi ≥ 0. If bit = 0, the problem admits a solution only
if qi = 0.

For our analysis, we note that having infinitely fast dynam-
ics in the generators is equivalent to assuming that their ramp
capacities are equal to the distance between the maximum
and minimum generation capacities qi − qi. Thus, we can
pose (5) in the following equivalent state-space form:

min
qit,∆q

i
t

∑
t∈Tk

ϕ̄t :=
∑
t∈Tk

∑
i∈S

∫ qit

0

pt(q, b
i
t)dq (7a)

s.t.

qit+1 = qit + ∆qit, i ∈ S, t ∈ T −k (7b)∑
i∈S

qit ≥
∑
j∈C

djt , t ∈ Tk (7c)

− (qi − qi) ≤ ∆qit ≤ (qi − qi), i ∈ S, t ∈ Tk−
(7d)

qi ≤ qit ≤ qi, i ∈ S, t ∈ Tk (7e)

qik = given, i ∈ S. (7f)

The variables ∆qit are the generation ramp increments that
are bounded by ±(qi − qi), the maximum generation ramp
that is physically possible. Since problems (7) and (5) are
equivalent, their feasible sets are the same. The multipliers
of the constraints (8c) are the prices p̄t.

The solution of the unconstrained market clearing prob-
lem represents the ideal performance for the market (in
the absence of ramping constraints). We now consider the
dynamically constrained market clearing problem:

min
qit,∆q

i
t

∑
t∈Tk

ϕt :=
∑
t∈Tk

∑
i∈S

∫ qit

0

pt(q, b
i
t)dq (8a)

s.t. qit+1 = qit + ∆qit, i ∈ S, t ∈ Tk
− (8b)∑

i∈S
qit ≥

∑
j∈C

djt , t ∈ Tk (8c)

− ri ≤ ∆qit ≤ ri, i ∈ S, t ∈ Tk
− (8d)

qi ≤ qit ≤ qi, i ∈ S, t ∈ Tk (8e)

qik = given, i ∈ S. (8f)

The multipliers for the constraint (8c) are the prices pt ≥ 0.
In this formulation, the ramps are bounded by ri, ri ≤ (qi−
qi), respectively. This constrains the dynamic response of the
generators. As before, we note that the bidding parameters
bit enter only the cost function and thus do not affect the
feasible set. In this case, however, the dynamic constraints
introduce time coupling because the ramp constraints might
become active. Consequently, the feasible set does depend on
the current state qik. Accordingly, we denote the feasible set
of this problem as ΩISO(qSk , dTk), where qSk = {q1

k, ..., q
S
k }.

The constrained social welfare is denoted as
∑
t∈Tk ϕt

with ϕt ≥ 0 since bit, q
i
t ≥ 0, t ∈ Tk. It is straightforward

to prove that
∑
t∈Tk ϕt ≥

∑
t∈Tk ϕ̄t since ΩISO(qSk , dTk) ⊆

ΩISOUNC(dTk). In other words, the performance of the con-
strained clearing problem is bounded by that of the uncon-
strained counterpart. We also have the following property,
proven in [24].

Property 2.3: For fixed bit ≥ 0, the point social welfare
ϕt evaluated at a solution of problem (8) and ϕ̄t evaluated
at a solution of (5) satisfy ϕt ≥ ϕ̄t, t ∈ Tk.

We now formally define the market efficiency as

ηk :=
ϕ̄k
ϕk
, ∀ k. (9)

By definition and from Proposition 2.3, we have that
ηk ∈ [0, 1]. The case where ηk = 1 is achieved if ϕk = ϕ̄k.
This case implies that the prices pk are close to those of the
unconstrained market clearing problem p̄k, which represents
the ideal market performance. The case where ηk = 0
occurs if the constrained social welfare diverges to infinity.
This case occurs when the future demands cannot be met
given the current states the generators and the ramping
constraints. This implies that the prices pk diverge from p̄k
(i.e., a small change in demand leads to large changes in
price). It is possible to show that the efficiency and price
difference between the constrained and unconstrained games
can be bounded by the magnitude of the ramp limits. This
can be done using the following Lipschitz property (see
[24]).

Property 2.4: If at a solution of the game (3) and (8), each
of the optimization problems satisfy LICQ and the prices pt,
t ∈ T and the production qit, t ∈ T , i ∈ S values are large
enough, then the solution is locally stable and the solution
is a Lipschitz continuous function of the game data.

III. IMPLEMENTATION ISSUES

To represent the game given by (3) and (8) in abstract
form, we define the market states xk as the set of quantities
qik and prices pk and define the aggregated vector over
the set Tk as xTk := {xk, ..., xk+T }. The controls uk are
defined as the set of ramps for all suppliers ∆qik, i ∈ S
with uTk = {uk, ..., uk+T−1}. The bidding increments ∆bik
are interpreted as the supplier controls and are denoted as
wik, and we define wk := {w1

k, ..., w
S
k }. We define the

disaggregated supplier vectors wiTk , i ∈ S and the total
aggregated vector wTk . The bidding states bik are interpreted
as the supplier states zk with aggregated vector zTk . We
include the problem data over the horizon (e.g., the demands)
in the aggregated vector mTk . We define the abstract dynamic
system as

(xk+1, zk+1) = φk(xk, zk, uk, wk), ∀ k ≥ 0. (10)

We can eliminate the states xk, zk by forward propagation
of (10). With this, we can express the supplier and market
clearing problem entirely in terms of the controls and initial



state conditions. We thus have the supplier problem,

min
wTk

∑
t∈Tk

φit(w
i
t, ut) (11a)

s.t. wiTk ∈ Ωi, (11b)

for i ∈ S and the constrained market clearing problem,

min
uTk

∑
t∈Tk

ϕt(ut, wt) (12a)

s.t. uTk ∈ ΩISO(xk,mTk). (12b)

Since the decisions of the players do not affect each others
feasible sets, the resulting game is a pure Nash equilibrium
problem (see [10]).

For implementation, the game given by (11) and (12)
can be solved over a receding horizon. This can be done
as follows. At time k we use the forecast data mTk (e.g.,
demands djt , t ∈ Tk = {k..k + T}) and the current
states xk, zk. We solve the game (11) and (12) over the
horizon Tk to obtain u∗Tk , w

∗
Tk . From these sequences, we

extract only the first actions uk ← u∗k, wk ← w∗k. The
system will evolve from its current state xk, zk into the
states xk+1, zk+1 according to the model (10). In the nominal
case (no forecast errors in the data mTk ), the state will
evolve as predicted. At the next step k + 1, we introduce
feedback in the market by shifting the horizon of the game
to obtain Tk+1 ← {k + 1..k + T + 1} and use the new
state xk+1, zk+1 as initial conditions. The new data mTk+1

is forecast and the game problem is solved to obtain the new
decisions uk+1, wk+1. This approach generates the feedback
law (uk, wk) = h(xk, zk,mTk).

Note that, even in the nominal case, feedback is required
because the horizon T is usually finite (i.e., at time k it is
not possible to foresee demands beyond time k + T ). This
implementation strategy that solves the game over a receding
horizon is intuitive but it is not used in practice. This might
be because of constraints in information exchange and in
decision times.

The current strategy used in practice iterates once between
the suppliers and the ISO in a distributed manner (see [19],
[5]). Here, each supplier guesses the ISO states (e.g. prices)
or, implicitly, its decisions. This can be done, for instance, by
using price forecasting. This guess is denoted by u`Tk , where
` is an iteration counter. The suppliers compute bidding
parameters w`Tk by solving (11). These are sent to the ISO
to solve the market clearing problem (12) to update the
decisions u`+1

Tk . This strategy can be interpreted as a single
Jacobi-like iteration (see [10]).

The Jacobi iterate u`+1
Tk , w`+1

Tk is feasible but not optimal
for the game. Feasibility follows since the suppliers decisions
wTk do not enter the feasible set ΩISO(·, ·) and since the
supplier problems always have a feasible solution for any
feasible decision of the ISO uTk . This suboptimal strategy
is an incomplete gaming strategy between the suppliers and
the ISO. A key observation is that the resulting incomplete
gaming error generated at each step results in subopti-
mal control actions (uk, wk) that are propagated forward

in time through the dynamic system (10). This introduces
additional error dynamics into the market that can lead
to instability. For instance, the suboptimal gaming solution
uk, wk obtained at time k might place the generators at
a future state xk+1, wk+1 from which the future demands
{djk+1, ..., d

j
k+1+T } can only be in a suboptimal manner

(e.g., using expensive generators) or not reached at all,
leading to load shedding.

IV. DYNAMIC STABILITY ISSUES

Stability, in the context of wholesale electricity markets,
reflects strong fluctuations and divergence of prices. Tradi-
tional control-theoretic stability analysis tools are not directly
applicable in this context because the market is inherently
dynamic and does not exhibit a natural equilibrium for
the states. While it is possible to design market clearing
procedures (these can be viewed as market controllers) that
artificially introduce equilibria (i.e., by enforcing periodicity
in some form), this strategy can constrain and degrade market
performance. New stability analysis tools are thus needed to
enable a systematic design, analysis, and implementation of
robust and stabilizing market clearing procedures that can
sustain market manipulation and strong dynamic variations
of demands and renewable supply. In this section, we take a
first step toward this goal by making use of a market-specific
Lyapunov stability framework.

We can express the market efficiency as an implicit func-
tion of the states of the form, ηk(xk, zk) or ηk for short-hand
notation. Here, we use the following definition of market
stability.

Definition 4.1: The market system defined by the game
(11) and (12) is said to be stable if, given η0 ∈ Ωη(ε) :=
{η | η ≥ ε} with ε ∈ [0, 1], there exist sequences uk, wk such
that ηk ∈ Ωη(ε), k = 0..∞.

Here, ε is an efficiency threshold value. We note that
efficiency is a state derived from the system physical states.
From (9) and (8a), we can see that the states of ISO and of
the suppliers xk, zk can be detected through the efficiency
ηk.

The market efficiency implicitly sets a measure of stability
for the prices. We propose to measure price stability as
the distance between the prices of the constrained and
unconstrained market clearing problems |pt − p̄t|. Having
such a relative measure is important since high efficiencies
do not necessarily imply large prices and vice-versa. We now
define the summarizing market state:

δk+1 := (1− (ηk+1 − ε)) · δk, k = 0..∞, (13)

with initial conditions δ0 := (1− (η0(x0, z0)− ε)) ≥ α > 0.
We can also use δ0 := (1− (η0 − ε)) ·µ with µ > 0 as long
as η0 ≥ ε. If ηk ≥ ε, k = 0..∞, then for any α > 0 such
that δ0 ≥ α, there exists κ ≥ 0 such that δk → κ for all
k = 0..∞. In other words, the summarizing market state has
a stable origin. Stability of this origin implies market stability
in the sense of Definition 4.1. On the other hand, if at any
step we have ηk < ε, the summarizing market state will
increase. Subsequent violations of the efficiency threshold



will make the summarizing state diverge from the origin.
We note that the states xk, zk can be detected through the
efficiency ηk and that the efficiency can in turn be detected
through the summarizing state δk.

For clarity, we summarize the sequence of dependencies
as follows.
• Knowing states xk, zk and the data mTk , defines
ηk(xk, zk) and δk.

• The control actions can be computed to give the
(uk, wk) = h(xk, zk,mTk) := h̃(δk).

• The states evolve as (10) or

(xk+1, zk+1) = φ(xk, zk, h(xk, zk,mTk))

= φ̃(xk, zk,mTk).

This defines ηk+1(φ̃(xk, zk,mTk)).
• The summarizing state evolves as

δk+1 =
(

1−
(
ηk+1(φ̃(xk, zk,mTk))− ε

))
· δk

:= f(δk, h̃(δk)) := f̃(δk).

Using this basic set of definitions, we now illustrate how
to establish sufficient stability conditions for a given market
design. In addition, we demonstrate that the current market
design given by the incomplete solution of the game (11)
and (12) is not stabilizing.

We propose to extend the market clearing problem (12)
by using the definition of the summarizing state as follows.

min
u
T−
k

∑
t∈Tk−

(δt+1 − δt) (14a)

s.t. uTk ∈ ΩISO(xk,mTk) (14b)

δt+1 = (1− (ηt+1 − ε)) · δt, t ∈ Tk− (14c)
ηt ≥ ε, t ∈ Tk (14d)
δk = given. (14e)

The objective function of this market clearing problem will
be used as a summarizing market function, which we define
formally as

VT (δk) := −
∑

t∈Tk−1

(δt+1 − δt) = (δk − δk+T ). (15)

A crucial observation is that the summarizing market func-
tion can be used as a Lyapunov function that we can use to
establish stability of the origin for the summarizing state δk.
To prove this, we first make the following definition.

Definition 4.2: A function VT (δk) is a Lyapunov function
for system δk+1 = f̃(δk) if (1) it is positive definite: in
a region Ω containing the origin if for δk ∈ Ω we have
VT (δk) ≥ 0 for δk ≥ 0 for all k, and (2) it is nonncreasing:
∆VT (δk) ≤ 0, for all k.

We now establish stability following the traditional ap-
proach of using the cost function of the controller (in this
case market clearing problem) as a Lyapunov function [17].

Theorem 4.3: If the game given by (11) and (14) with
T =∞ has a feasible solution ∀ k, then the market is stable.

Proof: From feasibility of (14d) we have that −(δt+1 −
δt) ≥ 0, t ∈ Tk− so VT (δk) =

∑
t∈Tk− −(δt+1 − δt) ≥ 0.

Consequently, positive definiteness follows. To prove that the
function is nonincreasing, we consider the cost function of
two consecutive problems generating two trajectories δkt , t ∈
{k..k+ T} and δk+1

t , t ∈ {k+ 1..k+ 1 + T} with T =∞,
δkk = δk and δk+1

k+1 = δk+1. We then have

∆VT (δk) = V∞(δk+1)− V∞(δk)

=

∞∑
t=k+1

(δk+1
t+1 − δ

k+1
t )−

∞∑
t=k

(δkt+1 − δkt )

= (δk+1 − δk+1
∞ )− (δk − δk∞)

= (δk+1 − δk)

= (1− (ηk+1 − ε)) · δk − δk
= −(ηk+1 − ε) · δk
≤ 0.

The bound come from the fact that δk+1
∞ = δk∞. The final

inequality comes from feasibility. The cost function is a
Lyapunov function. This implies that the summarizing state
has a stable origin and the market is stable. �

With this, we have established that the decay of the
summarizing function is a sufficient condition for market
stability. We note that if at any point we have that ηk < ε,
then δk+1 > δk, and the decay condition will not hold.

A crucial observation in our analysis is the need for the
stabilizing constraint (14d). With this, the feasible set of the
market clearing problem depends on the bidding states of the
suppliers. A consequence is that the ISO and the suppliers
might need to iterate several times (e.g., in a Jacobi manner)
to be sure of obtaining a feasible solution to the game.
Another consequence of this analysis is the fact that the
existing market design where a single iterate is performed
between the ISO and the suppliers cannot be guaranteed
to be stable in the sense of Definition 4.1 since not every
set of bidding parameters can be guaranteed to lead to a
market clearing solution satisfying the stabilizing constraint.
In other words, the current market design does not enable the
ISO to reiterate the bidding quantities with the suppliers to
stabilize the market. Hence, the market is more prone to be
destabilized by the suppliers if these do not have appropriate
means to anticipate the ISO decisions before bidding (e.g.,
by price forecasting). Finding a feasible solution to the game
(11) and (14) avoids these problems. Our construct provides
a mechanism to design and analyze market designs with
stability guarantees.

V. NUMERICAL CASE STUDY

In this section, we illustrate the effect of ramping con-
straints, foresight horizon, and incomplete gaming solutions
on market stability and price dynamics. We consider a market
system with three suppliers and one demand. One of the
suppliers has fast dynamics (high ramping capacity) but high
cost such as natural gas generators, the second one has
slow dynamics but also low cost such as a coal generator,
and the third one is used as a slack generator with infinite
ramp limits (equal to generation capacity) and a large cost.



This last supplier acts as a slack to avoid infeasibility. The
nominal parameters used are q = [0, 0, 0], q = [50, 70, 120],
r = −[5, 10, 120], r = [5, 10, 120], h = [4, 2, 5], and
g = [2, 1, 5]. We used q0 = [0, 40, 40] as initial conditions.
We consider the demand profile presented in Fig. 1, which
is obtained from a periodic signal perturbed with Gaussian
noise. We set the market stability threshold to ε = 0.65.
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Fig. 1. Demand profile used for numerical case study.

To illustrate the main developments of the paper, we
consider three market implementations. The first one uses a
foresight horizon of six hours and performs a single Jacobi-
like iteration at each clearing time (incomplete gaming). This
implementation is labeled as (T = 6Jac) and represents
current practice. The second implementation uses the same
horizon length, but the game is converged to optimality
(T = 6Opt) satisfying the stabilizing constraint. The third
implementation uses an horizon of 24 hours, and the game
is converged to optimality (T = 24Opt). To compute the
reference social welfare and prices, we also implemented an
unconstrained market clearing procedure.

In Fig. 2 we present the profiles of the summarizing
state δk for the three market implementations, in Fig. 3 we
present efficiency profiles ηk, and in Fig. 4 we present the
resulting clearing price signals pk. From Fig. 2 it is clear
that the summarizing state obtained from the suboptimal
implementation T = 6Jac is not strictly decreasing during
days 1 and 3 and thus its market clearing cost cannot be used
as a Lyapunov function. This indicates that the efficiency is
crossing the threshold at certain times, as can be observed
in Fig. 3. This clearly illustrates that incomplete gaming
can introduce market instability. The other two control
implementations remain stable, but, as expected, a longer
horizon improves performance. This is observed from the
faster decay of the summarizing state for T = 24Opt when
compared with T = 6Opt and from the efficiency profiles.
The efficiencies of T = 24Opt remain farther away from
the threshold. This illustrates that the length of the foresight
horizon can have important effects on market stability. The
reason is that longer horizons can anticipate and manage
ramping constraints more efficiently.

In Fig. 4 we observe the spikes in the prices for T = 6Jac
during the first hours of the simulation and during the
third day. In particular, note the strong price fluctuations
when compared with the optimal unconstrained prices. These
prices were obtained from the solution of the unconstrained
market clearing problem. Note that in the absence of ramping
constraints, the prices remain stable and nearly periodic.
On the other hand, when the ramp constraints are active,

strong price variations are observed. In particular, during
the third day, the prices for T = 6Jac reach levels of
150$/MW . The prices of T = 24Opt stay well below
100$/MW and much closer to the optimal unconstrained
prices. These levels are a consequence of having a longer
foresight horizon and converging the game to optimality to
ensure that the efficiency is above the stability threshold.
As a quantitative result, we computed the sum of squared
errors SSE =

∑
t |pt − p̄t|2 over the entire simulation

horizon of 7 days. Here, pt are the constrained price signals,
and p̄t are the unconstrained price signals. For T = 6Jac
we obtained SSE=2.16 × 105, whereas for T = 24Opt we
have SSE=4.19×104, an improvement of nearly an order of
magnitude. We have also observed that performing an extra
Jacobi-like iteration for T = 6Jac stabilizes the prices. In
addition, we have observed that extending the horizon of
T = 24Opt does not improve its performance significantly.

In Fig. 5 we present price profiles for T = 6Jac and
T = 24Opt with relaxed ramp constraints. In this case, we
increased the ramp limits from their nominal values to r =
−[10, 20, 120], r = [10, 20, 120]. As can be seen, the price
signals for both implementations are close to those of the
unconstrained clearing problem. The signals of T = 24Opt
get closer to the unconstrained reference faster because of a
combined effect of complete gaming and forecast horizon. In
particular, we observe that T = 6Jac performs well in this
case. The reason is that when the ramp limits are relaxed,
subsequent gaming solutions become closer to each other.

0 1 2 3 4 5 6 7

10
−5

10
0

Time [days]

δ k [−
]

←

← T = 6 Jac
T = 6 Opt
T = 24 Opt

Fig. 2. Summarizing state for market implementations.
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Fig. 3. Efficiencies for market implementations.

VI. CONCLUSIONS AND CHALLENGES

In this report, we illustrate how to construct market analy-
sis frameworks using market efficiency concepts, Lyapunov
analysis, and predictive control concepts. Such frameworks
can be used to explain how market stability issues arise as
a result of poor market designs that allow for incomplete
gaming between the ISO and the suppliers and that use
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Fig. 4. Clearing prices for market implementations.

0 1 2 3 4 5 6 7
0

50

100

150

Time [days]

p k [$
/M

W
]

Unconstrained
T = 6 Jac
T = 24 Opt

Fig. 5. Clearing prices for market implementations under relaxed ramp
constraints.

short foresight horizons. The definition of stability in terms
of market efficiency is general and can be extended to
consider network constraints, piecewise supply functions,
and Cournot games. In any of these developments, however,
we believe it is critical to use a consistent framework such as
that presented here to compare the stability and robustness
properties of different market designs. This will enable more
systematic market design procedures.

The issue of incomplete gaming opens the door to several
questions regarding convergent distributed approaches to
implement the bidding-clearing procedure in real time. From
a stability point of view, it is necessary to understand how
stability can be improved by defining markets at different
time scales (e.g., forward and real-time) and through stochas-
tic formulations. In addition, it is necessary to establish more
general stability conditions under finite horizons, forecast
errors, and non gaming behaviors. Finally, we note that the
framework can be extended to analyze the effect of consumer
elasticity on stability.
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